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SHELL THEORY BASED ON INVARIANTS 

V. V. Kuznetsov UDC 539.3 

The precise theory is considered for finite strains of a three-dimensional body sub- 
ordinate to the hypothesis of holding a normal element against a reference (central) sur- 
face. The first and second invariants of the strain tensor for a Green surface parallel 
to the reference surface are used as a measure of physical strains. It is shown that from 
the invariants of physical strains it is possible to determine any invariant characteristic 
of an elastic body: energy, stress tensor invariants, stress intensity, etc. A general 
definition is given for strain invariants of an arbitrary surface as components of the rela- 
tive change in the square of a surface element. There is simplification of invariants with 
small strains and any distortions of thin shells. Expressions are obtained for the change 
in coefficients of the first and second quadratic forms of the central surface for small 
strains, and arbitrary and small displacements�9 

i. Geometry of a Three-Dimensional Body. We assume that IR is radius vector of a 
three-dimensional body in the undeformed condition which is expressed in terms of reference 
surface radius vector r and the unit vector of the normal to the surface in the form R ~- 
r q-zn. In the general case r will be assumed to be independent of arbitrary curvilinear 
coordinates ~i" Coefficients of the first invariant form of the reference surface a~j---- 
r, ir,j, and for the surface z = const Aij = R,~R~. Here and subsequently i, j = I, 2: in- 
dices after a comma signify differentiation wi'th respect to ~i" The vector of the normal 
to surface z = const coincides with the vector of the normal to the base: n=(r,1~r.2)d~/2. 
For further convenience we adopt the following definition of the value d6y which depends 
on the coefficients of any two quadratic forms 6ij, Xij(d6y # dye): 

det ~1~ ~2 = f~11722-- B1~?21" 
d~v= Y2~ ?22 

Then d~a = ar ia22 - -a~ . ,  i s  d i s c r i m i n a n t  o f  q u a d r a t i c  form a i j d a i d a  j .  The s q u a r e  o f  an e l emen t  
of area dF 2 of surface z = const has the form dF 2 = dAAd~z2daa 2. We assume that deforma- 

tion of a three-dimensional body follows the hypothesis of holding a normal element against 
a reference surface [i] In the deformed condition RV = rV q-zn v, a~ V=r4rd ' = , , = 

(rVxrV~ dV-1/2 d f V ~  V ~- 2 V , ,2/ aa , = d A A d a l d a  2. Here f o r  dB$ , where $ i j  = ~ i j  v, we adop t  t h e  symbol dyu 

2. D e t e r m i n a t i o n  of  P h y s i c a l  S t r a i n  I n v a r i a n t s .  We c o n s i d e r  s u r f a c e  z = c o n s t  in  

t h e  deformed  c o n d i t i o n .  Assuming AijV = Ai j  + 2Ei j  and f o r m u l a t i n g  t h e  r a t i o  dFV2/dF 2, 
we o b t a i n  

d F V i / d F  2 = I q -  2 I  E + 4 I ~ E ;  

I E = (dAF ~ q- dEA) /dAA;  

(2.1) 

(2.2) 
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I~E = dEJdAa; ( 2 . 3 )  

Si j  = (1/2) ( R ~ R ~  - -  R,IR, j )  ( 2 . 4  ) 

We explain the meaning of I E and IEE. If we take as curvilinear coordinates a i Cartesian 

coordinates x i in a tangential plane at point 0 of surface z = const, then at this point 

Aij = 6ij, Aij V = 6ij + 2Eij* (6ij is Kronecker symbol). Here by Eij* we understand ex- 
pression (2.4) calculated at point 0 in coordinate system xi, Eij*, i.e., components of 
Green physical strains. These measures of strains are physical in the sense that in terms 
of them it is possible to express actual elongations and shifts without drawin$ on the 
metrics of the surface. Elongation of element dx I [2, 3] equals [(i + 2E11')i/2 -- I]. For 
small strains Eij* are actual elongations and shifts. Expressions (2.2) and (2.3) in co- 

ordinate system x i take the form 

I~ = El~ + E22, I ~  ~ - - ~ 2 .  

According to the definition in elasticity theory [2, 4], I E and IEE are first and second 

invariants of the strain tensor (the other three strain tensor components for a three- 
dimensional body E13", E23", E33" are zero in view of the deformation hypothesis adopted 
in Part i). As shown in elasticity theory, with affine deformation the ratio of areas 
dFV/dF of elementary figures constructed on vectors R.ld~, R,2d~, does not depend on figure 

�9 shape and dimensions, and it is a characteristic of physical deformation at a point. In 
view of (2.1) 

dFV/dF = (t + 21 E -6 4IE~ ~/2. (2.5) 

Thus, I E and IEE are connected with the relative change in area of an elementary figure. 
An approximate equality dFV/dF -~ 1 + I E is known which is obtained from (2.5) with small 
strains. In the case of an arbitrary set of coordinates ~i expressions Eij (2.4) will 
not be physical strains. Equations (2.2) and (2.3) make it possible to calculate the in- 
variants of physical strains without moving to calculation of individual components of 
Eij*. Methods for writing Eij* in terms of Eij are studied in tensor analysis [i, 2]. % 

In future we shall only consider the definition of invariant values. 

3. Relationships for Elasticity and Energy. The elastic properties of an isotropic 
body may be represented by relationship between invariants of physical stresses and 
strains, and also expressions for the density of energy HV in a unit volume V of an elastic 
body. If it is assumed, as in classical shell theory, that at any surface z = const there 
are no stresses o33" normal to the surface, then the stressed state at a point is governed 
by two invariants of physical stresses: 

(oij* are components of physical stresses in the coordinate system ~i = xi)" In the case 

of a linearly elastic body there are the following expressions (taking account of o3s* = 0): 

Ja 2 (;~ + p~) IE, I~o ;~ (k + 2~) I~ + 4~ o EE, 

II  v = (1/2) [(X + 2p) I }  - -  4>IxE] .  

H e r e  ~ a n d  t~ a r e  Lame c o n s t a n t s  f o r  a p l a n e  s t r e s s e d  s t a t e  c o n n e c t e d  w i t h  e l a s t i c i t y  m o d u l u s  
E and  P o i s s o n ' s  r a t i o  ~ by  t h e  e q u a l i t i e s  ), = r E ( 1  - v 2 ) ,  2> = E / ( 1  + ~ ) .  As c h a r a c t e r i s -  
t i c s  o f  t h e  s t r e s s e d  s t a t e  i t  i s  a l s o  p o s s i b l e  t o  t a k e  o t h e r  i n v a r i a n t  v a l u e s ,  f o r  e x a m p l e ,  
by  u s i n g  i n  s t r e n g t h  t h e o r i e s  t h e  i n t e n s i t y  o f  s t r e s s e s  o ( e q u i v a l e n t  s t r e s s ) :  

0" = (12o -- 31~(r) 112. 

+It is noted that the relationship between Eij* and Eij is ambiguous until no orientation 
is indicated for physical vectors el (e~e J=~J) with respect to reference vectors R z which 
may generate a new definition of components Eij*. 
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The total energy of an elastic body ~ is described as the integral through the volume of 
energy d e n s i t y ~  

H = Y N v  dV, dV = WAAJ1/2 dzda ida~"  
V 

Equilibrium equations are obtained from energy principles which use the variation of energy 
6~. The main values of stresses oi* and 02* are found easily from invariants as the roots 
of a quadratic equation 0 *2 - Ioo* + Ioo = 0. The relationships provided show that the 
main problems of deformable body mechanics may be formulated in invariants. 

4. Precise Relationships. According to (2.2), (2.3), IE, IEE at an arbitrary point 
are determined by the values Aij and Eij which are expressed in terms of characteristics 

of the reference surface. The corresponding relationships have the form 

A i j  = ai j  -j- 2zb~r -~ z2c,j; 

E i j =  ~ij "3i- Z~i . f  "q- (l/2)z2'vifi 

bij : - - l l r ,  u ,  Ci..f ---  n ~ i n , , j ;  

(4.1) 

(4.2) 

(4.3) 

(4.4) b ~ =  nVr v c v nVn v- 
- -  , i j ,  i j  = , i  , j ,  

~i~ = ( I / 2 ) ( a ~  - ~ ) ,  .~ j  = b ~ -  b~, ~ = c~ - ci~ (4.2) 

Here -bij(-bijV), cij(cij v) are coefficients of the second and third quadratic forms $ of an 

undeformed (deformed) reference surface; Kij and vii are changes in coefficients of the 

second and third quadratic forms of the reference surface with deformation. Equations 
(4.1)-(4.5) make it possible to find I E and IEE in terms of the radius vector of the refer- 
ence surface r V in the deformed condition. These expressions together with (2.1)-(2.4) 
are correct with arbitrary strains and displacements, and they are precise for a three- 
dimensional body subordinate to the hypothesis of holding a normal element against a refer- 
ence surface. 

5. Approximate Relationships for IE, !EE, ~F, ~" It is possible to obtain from Eqs. 

(2.2), (2.3), (4.1), and (4.2) approximate relationships for thin shells in which the cen- 
tral surface is taken as the reference surface. We provide a simple version based on the 
assumptions of technical thin shell theory with small strains for the central surface Eij*. 
Ignoring the change in Aij in a parallel surface and terms of the order of z 2 in (4.2), 

we have Aij = aij, Eij ~ sij + z~ij. By determining I E and IEE from (2.2) and (2.3) with- 

out additional assumptions we obtain 

I~  = I .  + zI,,, IEs = [.~ + zI~,, + z=I.. ,  

I ,  = (d~, -~ ds~)/da~ , [as = d , s /d~ ,  

I •  = (da• q- d• , I x . . = .  d•215 , 

i~.~ = [ .~  = (d~. + d~)/doo,  
(5.1) 

where Is, IEs (IK, INK ) are first 
of the central surface. Explicit 

and second invariants of the strain tensor (curvatures) 
expressions in terms of sij and Kij have the form 

I~ = d ~  x (a~2~. + al~2~ - -  2 a j 2 e j 2 ) ,  

I .  = d g  1 (a2~• + an• - -  2a j=• 

i~,,, = d l  ~ ( . . . ~  - .~,), 
I , .  = dja' (• + • - -  2• 

TA presentation of the energy of a three-dimensional elastic body in terms of a canonic 
tensor and its invariants is given in [5]. 
~Coefficients of the third quadratic form are expressed in terms of coefficients of the 
first two forms [6]. 
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For energy density HF in a unit area F of the central surface and total energy H we find 
that 

n p =  II~a + HF~, c~ = IP/12, I I ~  = (1/2) h [(~ + 2~) I~ - -  @ I ~ ] ,  

II~x = (t/2) e~ [(Z + 2~) I~ - -  3Ffxx], 

y 112 II = HF dF, dF = d ~  da~ do: z 
ze 

(h is shell thickness). 

Similarly we determine invariants of the tensors of physical forces I T and ITT and 

moments I M and IMM, and also the intensity of forces T and moments M: 

IT = 2h (~ + p)I~, ITT = h ~ [~ (~ + 2p)I~ + 4p2Ies], 

IM = 2Ch (~ + ~)Ix ,  

T = - -  3 4 #  M = - -  3I. ) 

The main v a l u e s  o f  f o r c e s  and moments a r e  found  a s  r o o t s  o f  q u a d r a t i c  e q u a t i o n s  

T *~ - -  I T T  $ -~ ITT ~- O, M .2 - -  I ~ M *  ~ [MM= 0. 

I n  t h e  c a s e  o f  r e v e r s i o n  t o  z e r o  o f  one o f  t h e  main  v a l u e s  o f  f o r c e s  T2~'~ = 0 and 
moments M2* = 0 ( f o r  e x a m p l e  w i t h  c y l i n d r i c a l  b e n d i n g )  T = I T l * l ,  M = IMI*t .  With  b e n d i n g  
w i t h o u t  s t r a i n s  f o r  t h e  c e n t r a l  s u r f a c e  d ~  V = d ~ .  G a u s s i a n  c u r v a t u r e  o f  t h e  c e n t r a l  s u r -  
f a c e ,  which  i s  t h e  s e c o n d  i n v a r i a n t  I b b  o f  t h e  c u r v a t u r e  t e n s o r ,  r e m a i n s  unchanged :  

I b b  = dbb/d~aV V = d b b / d a a .  

Then IKK ( 5 . 1 )  t a k e s  t h e  fo rm IK< = --IbK = - ( d K b  + d b K ) / d a a ,  i . e . ,  I<K , t h e  same as  f o r  
I < ,  i s  l i n e a r  w i t h  r e s p e c t  t o  t h e  Ki j  i n v a r i a n t .  The r e l a t i o n s h i p s  o b t a i n e d  in  p a r t  5 f o r  
t h e  i n v a r i a n t s  o f  t h i n  s h e l l s  a r e  c o r r e c t  w i t h  s m a l l  s t r a i n s  o f  t h e  c e n t r a l  s u r f a c e  and 
any  c u r v a t u r e s .  

6. A p p r o x i m a t e  R e l a t i o n s h i p s  f o r  n V, v, e~j, • With  s m a l l  s t r a i n s  and a r b i t r a r y  d i s -  
p l a c e m e n t s  ~ i j  and Kij  s h o u l d  be c a l c u l a t e d  by p r e c i s e  Eqs .  ( 4 . 5 ) .  S i m p l i f i c a t i o n  i s  o n l y  
p o s s i b l e  f o r  t h e  v e c t o r  o f  n o r m a l  nV t a k i n g  a c c o u n t  o f  eij, uu ( t h i s  e q u a l i t y  i s  p r e c i s e  
f o r  an u n s t r e t c h e d  c e n t r a l  s u r f a c e ,  and in  t h e  g e n e r a l  c a s e  dVaa = daa(l-4-2re + 4I~)): 

n v ~ ( r V v r  v ] d  -~!2 (1/2) (r v-v r,ir,j), • = - -  (nVrVj - -  nr,i;). ( 6 . 1 )  - - \  , 1A  ,2/ aa t ~ i j  ~ \ , i l - ,  i -  

As f o l l o w s  f rom ( 6 . 1 ) ,  w i t h  any  d i s p l a c e m e n t s  o f  a s o l i d  ~ i j  = ~ i j  = 0. Assuming 
r V =  r ~ -u ,  n V =  n - ~  v (u, v a r e  v e c t o r s  f o r  d i s p l a c e m e n t s  o f  t h e  c e n t r a l  s u r f a c e  and d i s p l a c e -  
ment  o f  t h e  n o r m a l )  we o b t a i n  f rom ( 6 . 1 )  w i t h o u t  a d d i t i o n a l  a s s u m p t i o n s  g e o m e c h a n i c a l l y  
n o n l i n e a r  r e l a t i o n s h i p s  

d ~  ~/2 (u ~ r  v = . ,~.. ,2 + r,lXu,2 + u,~Xu,2), 
eu : (I/2)(r,iu,/ q- r j u ,  i ]- u , i u , j ) ,  •  : - - ( v r , i 7  ~- n u , i j  - ~  vu , f j ) .  ( 6 . 2 )  

Expressions (6.2) or their equivalents (6.1) determine all the values required in order 
to calculate the invariants in part 5. If the vector for displacements u is expanded 
over a local basis i the surface, then arbitrary u,i are found using derivation equations 
for vector of the basis. With expansion of vector u with respect to unit vectors common 
for all of the surface of a Cartesian coordinate system derivation equations are not neces- 
sary since calculation of derivatives of the vector is reduced to determining normal deriva- 
tives of its components. 

In the case of small displacements the relationships in Part 5 remain in force, and 
(6.2) may be linearized: 
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v = d ~ / 2  (u,lXr,2 + r,lXu,2 ), 
e~ s = (1/2)(r iu~--~ r,ju,i), zij = - ( v r , i j  -~- nu,ij). 

It is noted that it is also possible to obtain other approximate expressions for invariants 
of thin shells in the theory in question by expanding (2.2) and (2.3) into series with 
respect to powers of z. 

7. The formulation and solution of boundary problems in nonlinear shell theory is 
connected with unknown difficulties. Direct variation methods based on using finite func- 
tions are currently most effective for shells of arbitrary shapes and boundaries [7]. Here 
a continuous system is brought to a system with discrete parameters. The version of the 
theory discussed gives a comparatively simple mathematical technique for work with curvi- 
linear shell elements. A distinguishing feature of the theory is determination of values 
which are objective characteristics of strains which retain their numerical values at a 
given point of a body independent of the curvilinear coordinates adopted [8]. Equilibrium 
equations for a discrete system may be obtained from conditions of energy stability. In 
this case variation of energy is reduced to a finite number of variable parameters. If 
discrete parameters have a physical meaning (for example radius vectors and unit vectors 
of the normal at certain points of the surface [9]), then force boundary conditions are 
found naturally from variations in energy. Here both static and kinematic boundary condi- 
tions may be imposed. The structure of energy variations for discrete nonlinear shell 
models and also questions of algorithmization of computations have been discussed in [I0, 
I i ] .  
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